sábado, 7 de junio de 2014

III UNIDAD LÍMITES Y CONTINUIDAD

III UNIDAD LÍMITES Y CONTINUIDAD

CALCULO DE LÍMITES
El límite de una función es un concepto fundamental del análisis matemático, un caso de límite aplicado a las funciones.
Informalmente, el hecho que una función f tiene un límite L en el punto c, significa que el valor de f puede ser tan cercano a L como se desee, tomando puntos suficientemente cercanos a c, independientemente de lo que ocurra en c.
A veces algo no se puede calcular directamente... ¡pero puedes saber cuál debe de ser el resultado si te vas acercando más y más!

Usemos por ejemplo esta función:

(x2-1)/(x-1)

Y calculemos su valor para x=1:

(12-1)/ (1-1) = (1-1)/ (1-1) = 0/0

¡Pero 0/0 es un problema! En realidad no podemos saber el valor de 0/0, así que tenemos que encontrar otra manera de hacerlo.

En lugar de calcular con x=1 vamos a acercarnos poco a poco:

x
(x2-1)/(x-1)
0.5
1.50000
0.9
1.90000
0.99
1.99000
0.999
1.99900
0.9999
1.99990
0.99999
1.99999
...
...
Vemos que cuando x se acerca a 1, (x2-1)/(x-1) se acerca a 2

Ahora tenemos una situación interesante:

  • Cuando x=1 no sabemos la respuesta (es indeterminada)
  • Pero vemos que va a ser 2
Queremos dar la respuesta "2" pero no podemos, así que los matemáticos usan la palabra "límite" para referirse exactamente a estas situaciones

El límite de (x2-1)/(x-1) cuando x tiende (o se aproxima) a 1 es 2

Y con símbolos se escribe así:





Así que es una manera especial de decir "ignorando lo que pasa al llegar, cuando te acercas más y más la respuesta se acerca más y más a 2"

En un gráfico queda así:

Así que en realidad no puedes decir cuánto vale en x=1.

Pero sí puedes decir que cuando te acercas a 1, el límite es 2.










No hay comentarios:

Publicar un comentario